

Calculus 2

Exercise Sheet 10

To be discussed on **19.05.2025**

Exercise 10.1 - The Divergence Theorem.

Consider the vector field $F(x, y, z) = (0, 0, z^2)$ and the surface Σ given by the whole surface of the cone $x^2 + y^2 = (1 - z)^2$, $0 \leq z \leq 1$, including the base $x^2 + y^2 = 1$, $z = 0$ (ES 9, exercise 9.6). Exploit the Divergence Theorem to show that

$$\int_{\Sigma} F \cdot N \, ds = \frac{\pi}{6}.$$

Exercise 10.2 - An important consequence of the Divergence Theorem.

A closed region Ω is bounded by a simple surface Σ . Use the Divergence Theorem to show that

$$\int_{\Omega} \nabla \phi \cdot \nabla \psi \, dx \, dy \, dz = \int_{\Sigma} \phi \frac{\partial \psi}{\partial n} \, dS - \int_{\Omega} \phi \Delta \psi \, dx \, dy \, dz,$$

where ϕ and ψ are scalar functions, n is the outer normal vector, and Δ the Laplace operator.

Hint: Compute $\operatorname{div}(\phi \nabla \psi)$ first. Remember that in 3D

$$\Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}.$$

Exercise 10.3 - Stokes theorem and the circulation of a vector field.

Compute the circulation of the vector field $F(x, y, z) := (z - y, x - z, y - x)$, along the boundary of the triangle of vertexes $A = (1, 0, 0)$, $B = (0, 1, 1)$ and $C = (0, 0, 1)$ oriented in such a way that one moves from A towards B , then towards C and back to A . Verify the Stokes theorem.